UNIVERSITY OF

ILLINOIS CHICAGO

Data Management

ENT Resident Seminar
Michael L. Berbaum, Ph.D.

June 2022

The below guidance on data management was developed by Michael L. Berbaum, Ph.D., of the CCTS
Biostatistics Core. For more information on this topic, including advice about how to apply it in your research,
consider scheduling a consultation with a biostatistician.

Please contact us with any comments or corrections.

Introduction

We usually separate data management from data analysis. The ultimate goal is to produce a data analysis
on which a report of study results can be based. For quantitative research the data analysis is almost always
carried out using a statistical program or package like SPSS, Stata, SAS, or R. The goal of data management
is to prepare the data for analysis by one of these packages, to make the data readable and correct.

Task 1: Data Entry
Case 1: You have data on paper and need to make it digital.

1. Need to know a target data format (CSV from spreadsheet, fixed columns with format specified) that
the statistical package will be able to read. Nowadays most statistical programs can read most formats.
But if you plan to use SAS, that sets a certain workflow; if you plan to use R, the workflow may be
slightly different.

2. Need to have a software tool which will make typing the data less error-prone. For example, range-
checking to be sure an age of 213 years cannot be entered.

a. SPSS has a data entry module (if still available) that’s pretty good

b. One can use the REDCap system: just program it like a questionnaire, and then type in the data
as if you are administering a questionnaire to yourself. Has various supports like range-checking
and branching.

3. In extremis use a plain text editor (also called an ASCI!I editor or a programming editor). On Windows
there’s a built in one called Notepad; for something a bit nicer, download Notepad++. There are dozens
of these (Nano, Emacs, ...). What you do not want is a wordprocessor like WordPerfect or Word:
Those put in hidden codes that will ruin data entry. Again, formats like fixed columns and CSV (comma
separated values) are the simplest.

Case 2: You have a digital file of some kind.

1. If the file is in a standard format that statistical programs can read, you’re done!

https://research-ally.ccts.uic.edu/
https://redcap.link/uic_ccts_biostats
https://ccts-bsc.netlify.app/redcap/

Data Management 2

2. Sometimes lab devices or certain complex databases use an arcane format. Then you need to use a
programming language to read that format and write the data out into a standard format (e.g., fixed
columns, CSV). You might want to hire this done rather than learn to do it yourself, though it's not
that that hard. Another option is to use a database language like SQL (pronounced either S-Q-L or
“sequel”). Consult the CCTS Bioinformatics Core for best practice.

At the end of this step you should have a digital computer file in a standard readable format.

Task 2: Read the Data into Your Statistical Package [Script 1]

Script 1 syntax file reads the raw data. If you save the output, give the file a name like that of Script 1.
It is very wise to include dates and times in file names, such as ReadRawData_2022-06-15_1600.sas Of
ReadRawData_2022-06-15_1600.R. Here one does not need to save the output.

The goal here is just to be sure the package can read your raw data file. If the package throws errors,
you’ll need to fiddle with the choice of format for reading the data file. You want to be able to see within the
statistical package that the numbers in your raw data input file are displaying correctly. Check that you have
the right number of rows — those are the cases, patients, respondents. Check that you have the right number
of columns — those are Record IDs and variables you have measured or questionnaire responses. Almost
always your data set will be rectangular like this.

This step is done when what’s showing inside the statistical package matches the content of your raw data
file. This confirms that the raw data file is readable.

Task 3: Label the Data [Script 2]

Script 2 contains Script 1 plus added syntax to label the data. It is very wise to include dates and times in
file names, such as LabelRawData_2022-06-16_1600.sas Or LabelRawData_2022-06-16_1600.R. You still
have additional syntax to write, so you do not need to save the results yet. It's best if Script 2 has a different
name from Script 1.

So far your data is unlabeled, or may be called V1, V2, ... or X1, X2, This is terrible because you don’t
really know what you're looking at, and it will be hopeless to try to remember that V29 is O2 saturation. You
need to apply two kinds of labels:

1. Variable labels like 02 sat or Age. (These will show up all through your later statistical output: Keep
them short. Capitalize. Don’t use a tricky naming scheme — if you have to explain it for someone else
to know what the variable is, it’s tricky.)

2, Value labels like 1ow, medium, and high that signify the meaning of categorical variables that might in the
raw data be coded as 1, 2, and 3. Generally set it so increasing number codes indicate increasing amounts.
If you have an indicator or “dummy” variable that is coded with 0’s and 1’s, say 0 = Male and 1 = Female,
apply those value labels, and adopt the variable naming convention that whatever the label for 1 is shall also
be the name of the variable; so the variable name is Female. If you call the variable Gender you'll have to
remember who the 0’s and 1’s are or look it up.

The labeling syntax differs between statistical packages. It’s unavoidable that you’ll have to learn how it’s
done from your statistical program’s Manual.

Run the syntax for labeling on your raw data. Now check that the labels got applied as you intended. A good
way to do that is to run the frequencies command that’s built in to every package. It should show you the
variable labels and the value labels. Take time to be sure nothing got twisted up: You'll be working with these
labels from now on, so take time to inspect the result and be sure it’s right.

Aside for REDCap

If you use the Research Electronic Data capture system (REDCap) to enter or to collect your data, you have
already supplied the variable and value labels when you set up the data entry forms. Don’t Repeat Yourself

https://research-ally.ccts.uic.edu/

Data Management 3

(DRY)! REDCap allows you to download your raw data (often in CSV format) and to download a file for your
chosen statistical package that already contains the proper syntax to label the data. Use that, and skip the
duplicative re-labeling step entirely!

Aside for Longitudinal Data

Longitudinal or repeated measures data can call for some special handling. Consult the CCTS Biostatistics
Core or your local guru. There are a few techniques to use when setting up a longitudinal data collection that
will save time and effort later.

Task 4: Cleaning the Data

At this point you have been able to read in your raw data, label it nicely, and check that the labels ended up
where they should have. The next task is always called cleaning. In effect you already started doing this
when you ran the frequencies command. Before when you did that, the focus was on correct labeling. Now
we run the command again, perhaps requesting more detailed output (e.g., a selection of Min, Max, Mean,
Median, Quartiles, Standard Deviation, Inter-Quartile Range or IQR). Look for Weirdness. Look for the
Impossible. Take notes on everything you notice.

1. Look at the Extremes of each variable. With a sample of children, there should not be any aged 43;
with a sample of adults, there should not be any 5-year-olds. If you have coded your rating scales
1-to-5, there should not be any 0’s or 6’s and 7’s. If there are a lot of cases (a spike) piled up at the Min
or Max, that’'s an indication of floor and ceiling effects (the allowed range of response was too narrow,
or respondents adopted a response style of going to one extreme or the other).

2. Watch out for miscoding or mishandling of missing data. Some statistical programs (SPSS) conven-
tionally used -9 for missing data, or -97, -98, and -99 for different kinds of missing data (e.g., could
not contact respondent, respondent refused to answer, etc.). If you don’t declare these codes to signify
missingness, the program will just assume they are valid data and use them with all the rest of the data
in the analysis. The result of that is not good! Some statistical programs have special functions to
examine the patterns of missing data (e.g., R) that are quite helpful.

For more tips and resources, see our Data Cleaning page.

Task 5: Repair the Data [Script 3]

Script 3 contains Script 2 plus added syntax to modify and save data values. It is very wise to include dates

and times in file names, such as RepairData_2022-06-15_1600.sas Of RepairData_2022-06-15_1600.R

The saved data files names should again include dates and times, such as RepairData_2022-06-15_1600.sas7bdat
or RepairData_2022-06-15_1600.Rdata. It's best if Script 3 has a different name from Script 2. These files

can be read in by later scripts if you choose (which makes later scripts shorter). Many workers will just
choose to expand Script 3 to make Script 4 (with a new name), and not save the built data set yet.

What if you find a mistake? The fix is usually to replace (selected portions of) the bad data with correct data,
if you know it. If you don’t know what the respondent actually said or what the correct measurement was, the
replacement will likely have to be the missing data code (e.g., in R it's NA, in SPSS it might be -9, in SAS it’s
a period .).

At the end of Task 5 you should have a data file that is correct, or nearly so.

Task 6: Recode or Transform the Data and Save [Script 4]

Script 4 contains Script 3 plus added syntax to create new variables. It's best if Script 4 has a different name
from Script 3. The next variables might be recodes of existing variables, such as replacing a 1-to-5 rating
scale by grouping the outer values: (1, 2), 3, (4, 5) becomes 1, 2, 3. The new variable should have a
new name that relates to the original variable’s name and shows what was done: Depression5 is recoded

https://research-ally.ccts.uic.edu/
https://research-ally.ccts.uic.edu/

Data Management 4

as Depression3. Always keep the original variable. A variable might need to be log transformed to reduce
skewness in its distribution: Income is transformed into logIncome. This is looking ahead to the data analysis
phase.

It is the nature of this work that there will be additional additions to Script 4 as new analyses
and interpretations are tried out. It's tiresome to have to keep choosing new names for scripts
that are only modestly changed (i.e., added another recode). At this point you might start
calling your scripts something like MasterBuild_2022-07-04_1234.sas and the saved data file
MasterBuild_2022-07-04_1234.sas7bdat. (For R this would be MasterBuild_2022-07-04_1234.R
and the saved data file MasterBuild_2022-07-04_1234.Rdata.

Incredibly Important Point about Dates in MasterBuild File Names

Putting dates and times in MasterBuild file names pays a big dividend when you reach the data analysis
stage. When you write an analysis script, there should be some header documentation at the top: Project
name, who wrote (this) syntax file, when started, purpose, short explanation of technique used, changes,
etc. And then the next thing you invariably will do is read in the latest MasterBuild file to get at the data. To
do that you have to type the name of the file to read, something like MasterBuild_YYYY-MM-DD_HHMM. Doing
that means you know down to the minute which version of the data was used to produce this batch
of analytical results. The syntax of this read statement will vary with different packages, but whichever
the package, it has to find the saved data file, and if the saved data file contains dates and times, you have
automatically documented the exact version of the data used for this set of analyses.

If you work with REDCap and download its SAS or R build files, here’s a major tip. Open the file with
extension .sas or .R that you downloaded from REDCap and find the spot where the built file is saved. That
file will be called redcap. Edit the name of the file to be redcap_YYYY-MM-DD_HHMM (fill in today’s date). You
can also change redcap to something more informative, like REDCap-MasterBuild_YYYY-MM-DD_HHMM. This
guarantees that any file trying to read the saved built data must employ the date and time to read the file,
thereby automatically ensuring this information is included in your scripts and outputs. There will be a huge
payoff later when the journal editor sends a “revise and resubmit” and you have to locate which version of
the data was used in the analysis.

Other Data Management Principles Not Elsewhere Mentioned

1. Never throw anything away! Disk space is abundant and cheap. Any time you save a file, just put a
new date and time in the filename. Yes, you will have some copies of rather similar files. So what? You
will not lose any of your work!

2. Always save original and changed versions of variables This is an application of the principle
Never throw anything away!

3. If you find your working subdirectory (folder) getting cluttered with too many old files that you're not
using, make subdirectory called Archive or Posted Files and move the excess files there. Now they
are out of your way, but you still have them all. What principle would this be?

4. Think about the file hierarchy for a project. You'll need subdirectories for RawData and MasterBuilds
and Images and Essays. Plan this out. Discuss it with your workmates and be sure everyone agrees
and understands what goes where. Write it down so new team members can learn it easily.

5. The Ultimate Goal of data management is that it's possible to rebuild everything by running one script,
or a short stack of scripts. In minutes. If you can’t do that, you still have to improve your workflow and
its reproducibility.

6. You cannot rebuild what you do not have. Back up everything often! (Your system may provide
automatic backups, but be sure. Most cloud storage solutions allow recovery of lost files, so consider
using Box or DropBox or GitHub. (Be sure all HIPAA rules are complied with.)

Data Management 5

Resources

Assessment Capacities Project (ACAPS) (2016). Data Cleaning. 19 pp. PDF, many links. https://web.archive.
org/web/20230628185233/https://www.acaps.org/fileadmin/user_upload/acaps_technical_brief data_clea
ning_april_2016_0.pdf.

Benini, Aldo (2013a). How to Approach a Dataset, Part 1: Data Preparation. https://web.archive.org/web/20
160318211302/https://aldo-benini.org/Level2/HumanitData/Acaps_How_to_approach_a_dataset Part_1
_Data_preparation.pdf.

Benini, Aldo (2013b). How to Approach a Dataset, Part 2: Analysis. https://web.archive.org/web/20160318
211248/https://aldo-benini.org/Level2/HumanitData/Acaps_How_to_approach_a_dataset_Part_2_Analysi
s.pdf.

Bonner, Anne (2019). The complete beginner’s guide to data cleaning and preprocessing. Python, simple.
https://web.archive.org/web/20240130234159/https://towardsdatascience.com/the-complete-beginners-
guide-to-data-cleaning-and-preprocessing-2070b7d4c6éd.

Elgabry, Omar (2019). The ultimate guide to data cleaning. https://web.archive.org/web/20240130233510/htt
ps://towardsdatascience.com/the-ultimate-guide-to-data-cleaning-3969843991d4?gi=c3e850fa59c9.

Jonge, Edwin de and Mark van der Loo (2013). An introduction to data cleaning with R. PDF, extensive (53
pages). https://web.archive.org/web/20240130234406/https://cran.r-project.org/doc/contrib/de_Jonge+van
_der_Loo-Introduction_to_data_cleaning_with_R.pdf.

Sciforce (2019). Data cleaning and processing for beginners. Python, simple. https://web.archive.org/
web/20240130233942/https://medium.com/sciforce/data-cleaning-and-preprocessing-for-beginners-
25748ee00743.

Willems, Karlijn (2017). An introduction to cleaning data in R. R, simple. https://web.archive.org/web/202401
30235354/https://www.datacamp.com/courses/cleaning-data-in-r.

https://web.archive.org/web/20230628185233/https://www.acaps.org/fileadmin/user_upload/acaps_technical_brief_data_cleaning_april_2016_0.pdf
https://web.archive.org/web/20230628185233/https://www.acaps.org/fileadmin/user_upload/acaps_technical_brief_data_cleaning_april_2016_0.pdf
https://web.archive.org/web/20230628185233/https://www.acaps.org/fileadmin/user_upload/acaps_technical_brief_data_cleaning_april_2016_0.pdf
https://web.archive.org/web/20160318211302/https://aldo-benini.org/Level2/HumanitData/Acaps_How_to_approach_a_dataset_Part_1_Data_preparation.pdf
https://web.archive.org/web/20160318211302/https://aldo-benini.org/Level2/HumanitData/Acaps_How_to_approach_a_dataset_Part_1_Data_preparation.pdf
https://web.archive.org/web/20160318211302/https://aldo-benini.org/Level2/HumanitData/Acaps_How_to_approach_a_dataset_Part_1_Data_preparation.pdf
https://web.archive.org/web/20160318211248/https://aldo-benini.org/Level2/HumanitData/Acaps_How_to_approach_a_dataset_Part_2_Analysis.pdf
https://web.archive.org/web/20160318211248/https://aldo-benini.org/Level2/HumanitData/Acaps_How_to_approach_a_dataset_Part_2_Analysis.pdf
https://web.archive.org/web/20160318211248/https://aldo-benini.org/Level2/HumanitData/Acaps_How_to_approach_a_dataset_Part_2_Analysis.pdf
https://web.archive.org/web/20240130234159/https://towardsdatascience.com/the-complete-beginners-guide-to-data-cleaning-and-preprocessing-2070b7d4c6d
https://web.archive.org/web/20240130234159/https://towardsdatascience.com/the-complete-beginners-guide-to-data-cleaning-and-preprocessing-2070b7d4c6d
https://web.archive.org/web/20240130233510/https://towardsdatascience.com/the-ultimate-guide-to-data-cleaning-3969843991d4?gi=c3e850fa59c9
https://web.archive.org/web/20240130233510/https://towardsdatascience.com/the-ultimate-guide-to-data-cleaning-3969843991d4?gi=c3e850fa59c9
https://web.archive.org/web/20240130234406/https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf
https://web.archive.org/web/20240130234406/https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf
https://web.archive.org/web/20240130233942/https://medium.com/sciforce/data-cleaning-and-preprocessing-for-beginners-25748ee00743
https://web.archive.org/web/20240130233942/https://medium.com/sciforce/data-cleaning-and-preprocessing-for-beginners-25748ee00743
https://web.archive.org/web/20240130233942/https://medium.com/sciforce/data-cleaning-and-preprocessing-for-beginners-25748ee00743
https://web.archive.org/web/20240130235354/https://www.datacamp.com/courses/cleaning-data-in-r
https://web.archive.org/web/20240130235354/https://www.datacamp.com/courses/cleaning-data-in-r

	Introduction
	Task 1: Data Entry
	Case 1: You have data on paper and need to make it digital.
	Case 2: You have a digital file of some kind.

	Task 2: Read the Data into Your Statistical Package [Script 1]
	Task 3: Label the Data [Script 2]
	Aside for REDCap
	Aside for Longitudinal Data

	Task 4: Cleaning the Data
	Task 5: Repair the Data [Script 3]
	Task 6: Recode or Transform the Data and Save [Script 4]
	Incredibly Important Point about Dates in MasterBuild File Names
	Other Data Management Principles Not Elsewhere Mentioned
	Resources

